Инверсия. Мифы и не только.

С понятием “инверсия” у парапланеристов связанно очень много впечатлений и воспоминаний. Обычно об этом явлении говорят с сожалением, что-то типа “опять низкая инверсия не дала пролететь хороший маршрут” или “я уперся в инверсию и не смог набрать больше”. Давайте разберемся с этим явлением, с тем так ли оно плохо? И с обычными ошибками, которые допускают парапланеристы рассказывая об “инверсии”.

Итак обратимся для начала к Википедии:

Инверсия в метеорологии – означает аномальный характер изменения какого-либо параметра в атмосфере с увеличением высоты. Наиболее часто это относится к температурной инверсии, то есть к увеличению температуры с высотой в некотором слое атмосферы вместо обычного понижения.

 

Так что выходит, что говоря об “инверсии”, мы говорим именно о температурной инверсии. То есть об увеличении температуры с высотой в некотором слое воздуха. – Этот момент очень важно себе твердо уяснить, ведь говоря о состоянии атмосферы можно выделить что для нижней части атмосферы (до тропопаузы):

  • Нормальное состояние – когда температура воздуха с увеличением высоты – уменьшается. Например средняя скорость падения температуры с высотой для стандартной атмосферы принята ИКАО в 6.49 град К на км.

  • Не нормальное состояние – когда температура с увеличением высоты остается постоянной (изотермия)

  • Так же не нормальное состояние – когда температура с увеличением высоты увеличивается (инверсия температуры)

 

Наличие изотермии или настоящей инверсии в каком-то слое воздуха – означает что атмосферный градиент тут равен нулю или даже отрицателен, и это явно свидетельствует о СТАБИЛЬНОСТИ атмосферы (о том что такое стабильность и нестабильность описано в этой статье).

Свободно поднимающийся объем воздуха, попадая в такой слой очень быстро теряет свою разницу в температуре между ним и окружающей средой.(Воздух поднимаясь охлаждается по сухо- или влажноадиабатическому градиенту, а воздух окружающий его среды – не меняет температуру или даже нагревается. Та разница температур, что являлась причиной превышения силы Архимеда, над силой тяжести быстро нивелируется и движение прекращается).

Приведем пример, предположим у нас есть некий объем воздуха, который перегрелся у поверхности земли, относительно окружающего его воздуха, на 3 градуса K. Этот объем воздуха, отрываясь от земли порождает термический пузырь (термик).  На начальном этапе его температура на 3 градуса выше, а следовательно плотность для того же объема, по сравнению с окружающем его воздухом – ниже. Следовательно сила Архимеда будет превышать силу тяжести, и воздух начнет двигаться вверх с ускорением (всплывать). Всплывая вверх, атмосферное давление будет все время падать, всплывающий объем будет расширяться, и расширяясь охлаждаться по сухоадиабатическому закону (перемешивание воздуха обычно пренебрегают на больших объемах).

Долго ли он будет всплывать? – зависит от того как быстро по высотам, охлаждается окружающая среда вокруг него. Если закон изменения охлаждения окружающей среды такой же как сухоадиабатический закон – то начальная “перегретость относительно окружающей среды” все время будет сохраняться, и наш всплывающий пузырь все время будет разгоняться (сила трения будет увеличиваться со скоростью, и при значимых скоростях её уже нельзя будет пренебрегать, ускорение будет – уменьшаться).

Но такие условия – крайне редки, чаще всего мы имеем атмосферный градиент в районе 6.5 – 9 град К на км. Возьмем для примера 8 град К на км.

Разница между атмосферным градиентом и сухоадиабатическим = 10-8=2 град К на км, тогда на высоте 1 км от поверхности, от начальной перегретости в 3 градуса, осталась только 1. (наш пузырь охладился на 9.8=10 градусов, а окружающий воздух на 8). Еще 500м подъема и температуры сравняются. То есть на высоте 1.5 км,температура пузыря и температура окружающего воздуха будут одинаковы, сила Архимеда и сила тяжести уравновесятся. Что произойдет с пузырем? Во всех парапланерных книгах, пишут – что он останется на этом уровне. Да, в конечном счете, теоретически, именно это и произойдет. Но по динамика процесса нам летающим – тоже важна.

Зависание пузыря на новом, равновесном уровне будет не сразу. И если бы, не было тех явлений, которыми пренебрегают описывая подъем пузыря (сила трения, перемешивание с окружающим воздухом, теплообмен с окружающим воздухом) он бы и не завис никогда :).

Вначале он “по инерции” проскочит выше, равновесного уровня (он же разгонялся все время что поднимался и имеет уже приличную скорость, а значит и запас кинетической энергии. Поднимаясь над этим уровнем (1.5 км), градиент будет работать уже в противоположную сторону, то есть наш объем воздуха будет охлаждаться быстрее чем окружающий, сила тяжести будет превышать силу Архимеда, и результирующая сила будет действовать уже вниз, тормозя (вместе с силой трения) его движение. На какой-то высоте, их действие полностью остановит наш пузырь и он начнет движение вниз. Если полностью пренебречь силой трения и считать что воздух не смешивается с окружающим и не обменивается энергией, то он бы колебался вверх вниз от 0 до 3000м. Но в реальности этого конечно не происходит. Сила трения, теплообмен и смешивание – присутствуют и колебания быстро затухают. Особенно быстро их ограничивают слои с разными градиентами.

Рассмотрим теперь тот же пример, только со слоем инверсии, градиентом в -5 град К на км (помним что в метеорологии градиент с обратным знаком), на высоте 750м толщиной в 300м.

Тогда за первые 750м  наш пузырь потеряет 1.5 градуса перегретости (10-8=2 град К на км. 2*0,75 = 1,5 град) , поднимаясь дальше он продолжит охлаждаться на 1 град на каждые 100м, а начиная с высоты 750м, окружающий воздух только повышает свою температуру. Значит разница между градиентами. 10–5=15 град К на км, или 1.5 град на 100м.  И через следующие 100м (на высоте 850 метров), пузырь по температуре сравняется с окружающей средой.

Значит слой инверсии с градиентом -5град К на км быстро остановил пузырь. (Так же быстро он погасит инерцию пузыря, в идеале через 200м, а по факту, с учетом трения, перемешивания и теплообмена – существенно раньше).

Мы видим, что слой инверсии ограничивает колебания пузыря (если мы пренебрегаем трением, перемешиванием и теплообменом) с диапазона 0-3000м, до диапазона 0- 1050м.

Так ли плоха инверсия ? Если она на низкой высоте, и замедляет наши термики – это плохо. Если она на достаточно большой высоте и защищает от подъема воздуха в зоны нестабильности в которых происходит конденсация, и где влажноадиабатический градиент меньше чем атмосферный, то инверсия – это хорошо.

 

Из-за чего возникает инверсия температуры ?

Ведь строго говоря, для термодинамического равновесия атмосферы до уровня тропопаузы – это не нормальное состояние.

Выделяют 2 вида инверcии по месту проявления:

  • приземная (та которая начинает от поверхности земли)
  • инверсия на высоте (какой-то слой на высоте)

И можно выделить 4 типа инверсии, по видам ее возникновения. со всеми из них мы можем легко столкнутся в повседневной жизни и на полетах:

  • приземного радиационного выхолаживания
  • инверсия подтекания
  • инверсия адвективного переноса
  • инверсия оседания

 

С приземной инверсией все просто, её еще называют инверсией радиационного выхолаживания или ночной инверсией. Поверхность земли, при ослаблении поступления тепла от солнца быстро охлаждается ( в том числе и из-за инфракрасного излучения). Охлажденная поверхность охлаждает и прилегающий к ней слой воздуха. Так как воздух – плохо переносит тепло, то выше определенной высоты это охлаждение уже не чувствуется.

Приземная инверсия

Толщина слоя интенсивность его переохлаждения зависят от :

  • длительности охлаждения, чем длиннее ночь тем больше выхолаживается поверхность и примыкающий к ней слой воздуха. Осенью и зимой приземные инверсии толще и имеют более выраженный градиент.
  • скорости охлаждения, например если есть облачность, то часть инфракрасного излучения, с которым уходит тепло – отражается обратно на землю, и интенсивность охлаждения – заметно снижается (облачные ночи – теплые).
  • теплоемкости подстилающей поверхности  поверхности имеющие большую теплоемкость и накопившие тепло за день – дольше охлаждаются и меньше охлаждают воздух (например теплые водоемы).
  • наличия ветра у земли, ветер перемешивает воздух и он интенсивнее охлаждается, слой (толщина) инверсии – заметно больше.

 

Инверсия подтекания – возникает когда холодный воздух стекает со склонов в долину, вытесняя более теплый воздух вверх. Воздух может стекать как с охлажденных склонов ночью, так и днем, например с ледников.

Инверсия подтекания

Инверсия адвективного переноса возникает при горизонтальном переносе воздуха. Например теплых воздушных масс на холодные поверхности. Или просто разных воздушных масс.  Ярким примером – являются атмосферные фронты, на границе фронта будет наблюдаться инверсия. Другой пример, адвекция теплого (ночью) воздуха с водной поверхности на холодную сушу. Осенью такая адвекция часто визуализируется туманами. (их так и называют, адвективные туманы, когда влажный теплый воздух с воды переноситься на холодную сушу, или на более холодную воду и т.д.)

Адвективная инверсия

Адвективная инверсия

Инверсия оседания, возникает если внешние силы заставляют какой-то слой воздуха опускаться вниз. При опускании воздух будет сжиматься (так как атмосферное давление увеличивается) и адиабатически нагреваться, и может оказаться что нижележащие слои – имеют температуры ниже – возникнет инверсия. Этот процесс может происходить в разных условиях и масштабах, такая инверсия возникает например при оседании воздуха в антициклонах, при опускании воздуха в горно-долинной циркуляции, между облаком с осадками и окружающем воздухом рядом, или, например при фёне. Для ее возникновения нужно постоянное внешнее воздействие которое осуществляет перенос и опускание воздуха.

Инверсия оседания

Инверсия оседания

Вернемся теперь к мифам об инверсии.

Очень часто, парапланеристы говорят об инверсии там, где ее нет. Связанно это с тем, что мы привыкли любой слой который заметно тормозит и задерживает вертикальное перемещение воздуха называть инверсией  хотя это – не так. Просто слой с маленьким градиентом, или изотермия – тоже быстро блокируют перемещение воздуха, но при этом не являются настоящей инверсией.

Второй момент возник благодаря тому, что в книгах, на иллюстрациях обычно для наглядности рисуют атмосферные градиенты  или аэрологическую диаграмму в ПРЯМОУГОЛЬНЫХ СИСТЕМАХ КООРДИНАТ (АДП), где изотермы (линии постоянных температур) направлены снизу вверх перпендикулярно изобарам (или линиям одинаковой высоты). На таких рисунках инверсия, это любой участок кривой стратификации наклонённый ВПРАВО от вертикали снизу-вверх. Инверсия в таких координатах – легко видна.

Пример из книги Д. Пегана "Понять небо"

Пример из книги Д. Пегана “Понять небо”.

На практике же, большинство пользуются аэрологическими диаграммами в косоугольных системах координат (АДК), например с сайта meteo.paraplan.ru и тут уже, изотермы сами наклонены вправо, так что для того чтобы увидеть инверсию, нужно сравнить КРУТИЗНУ наклона кривой стратификации с изотермой! А сделать это на глазок при беглом просмотре – намного сложнее чем с диаграммной в АДП. Посмотрите на диаграмму внизу, у земли видна приземная небольшая инверсия.  В слое 400м температура чуть выросла, (на высоте 600 метров она примерно на градус теплее чем у земли) градиент порядка -2.5 градуса К на км. А вверху, НЕ инверсия, а просто очень небольшой градиент, примерно +3.5 градусов К на км.

Не инверсия

Инверсия и Не инверсия

Из-за того что не любой наклон вправо будет инверсия на АДК, пилоты часто употребляют это слово не там где надо, чем раздражают истинных метеорологов 🙂

В то же время расчетные, модельные аэрологические диаграммы могут не прогнозировать тонкие слои инверсии, так как усредняют температуру по слою, вместо того чтобы учесть 2 слоя, слой инверсии толщиной, например 100м с разницей температур на нижней и верхней границе в  -1град, прилежащий слой в 900 метров с разницей температур  +8 градусов. они просто нарисуют более толстый слой, 1 км – с о средним градиентом 7 градусов на этот километр. В то время как в реальности там будет несколько разных слоев.

Например как на приведенной ниже натурной диаграмме (АДП). На ней видно и приземной слой инверсии толщиной 200м + слой изотермии.  И тонкий слой инверсии на высоте 2045м, и слой изотермии на высоте 3120м. Эти тонкие слои не рассчитываются модельно, но фактически – оказывают сильное влияние на термики.

Натурная АДП с шара- зонда

Резюме.

Не каждая часть кривой стратификации наклоненная вправо на АДК – является инверсией, будьте внимательны! Настоящую инверсию можно увидеть только на аэрологической диаграмме снятой по фактическим данным зондирования атмосферы. На “модельных” диаграммах, они могут быть не просчитаны, а лишь учтены в уменьшении градиента на каком-то слое. Однако в этом случае, об их существовании можно догадаться, если принимать во внимания возможные факторы возникновения инверсий.

 

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Поделиться статьей в социальных сетях

Line Para2000.ru

Добавить комментарий